A parametrized newton method for nonsmooth equations with finitely many maximum functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Smoothing Nonlinear Conjugate Gradient Method for Nonsmooth Equations with Finitely Many Maximum Functions

and Applied Analysis 3 By Lemmas 4 and 5, we have Lemma 6. Lemma 6. Suppose that Assumption 3 holds, αk is determined by (9), and we get

متن کامل

A Modified Levenberg-Marquardt Method for Nonsmooth Equations with Finitely Many Maximum Functions

For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants are of particular importance because of their locally fast convergent rates. Finitely manymaximum functions systems are very useful in the study of nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and many problems in mecha...

متن کامل

A parameterized Newton method and a quasi-Newton method for nonsmooth equations

This paper presents a parameterized Newton method using generalized Jacobians and a Broyden-like method for solving nonsmooth equations. The former ensures that the method is well-deened even when the generalized Jacobian is singular. The latter is constructed by using an approximation function which can be formed for nonsmooth equations arising from partial diierential equations and nonlinear ...

متن کامل

Approximate Newton Methods for Nonsmooth Equations

We develop general approximate Newton methods for solving Lipschitz continuous equations by replacing the iteration matrix with a consistently approximated Jacobian, thereby reducing the computation in the generalized Newton method. Locally superlinear convergence results are presented under moderate assumptions. To construct a consistently approximated Jacobian, we introduce two main methods: ...

متن کامل

Inexact Newton Methods for Solving Nonsmooth Equations

This paper investigates inexact Newton methods for solving systems of nonsmooth equations. We de ne two inexact Newton methods for locally Lipschitz functions and we prove local (linear and superlinear) convergence results under the assumptions of semismoothness and BD-regularity at the solution. We introduce a globally convergent inexact iteration function based method. We discuss implementati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 2009

ISSN: 0862-7940,1572-9109

DOI: 10.1007/s10492-009-0025-5